Problem 72
Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty} \frac{1}{k(\ln k)(\ln \ln k)^{p}}$$
Problem 72
Consider a wedding cake of infinite height, each layer of which is a right circular cylinder of height 1. The bottom layer of the cake has a radius of \(1,\) the second layer has a radius of \(1 / 2,\) the third layer has a radius of \(1 / 3,\) and the \(n\) th layer has a radius of \(1 / n\) (see figure). a. To determine how much frosting is needed to cover the cake, find the area of the lateral (vertical) sides of the wedding cake. What is the area of the horizontal surfaces of the cake? b. Determine the volume of the cake. (Hint: Use the result of Exercise 66.) c. Comment on your answers to parts (a) and (b).
Problem 72
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} b^{-n}=0, \text { for } b > 1$$
Problem 73
Consider the following infinite series. a. Write out the first four terms of the sequence of partial sums. b. Estimate the limit of \(\left\\{S_{n}\right\\}\) or state that it does not exist. $$\sum_{k=1}^{\infty} 3^{-k}$$
Problem 73
The Fibonacci sequence \(\\{1,1,2,3,5,8,13, \ldots\\}\) is generated by the recurrence relation \(f_{n+1}=f_{n}+f_{n-1},\) for \(n=1,2,3, \ldots,\) where \(f_{0}=1, f_{1}=1\). a. It can be shown that the sequence of ratios of successive terms of the sequence \(\left\\{\frac{f_{n+1}}{f_{n}}\right\\}\) has a limit \(\varphi .\) Divide both sides of the recurrence relation by \(f_{n},\) take the limit as \(n \rightarrow \infty,\) and show that \(\varphi=\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\frac{1+\sqrt{5}}{2} \approx 1.618\). b. Show that \(\lim _{n \rightarrow \infty} \frac{f_{n-1}}{f_{n+1}}=1-\frac{1}{\varphi} \approx 0.382\). c. Now consider the harmonic series and group terms as follows: $$\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\left(\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)$$ $$+\left(\frac{1}{9}+\cdots+\frac{1}{13}\right)+\cdots$$ With the Fibonacci sequence in mind, show that $$\sum_{k=1}^{\infty} \frac{1}{k} \geq 1+\frac{1}{2}+\frac{1}{3}+\frac{2}{5}+\frac{3}{8}+\frac{5}{13}+\cdots=1+\sum_{k=1}^{\infty} \frac{f_{k-1}}{f_{k+1}}.$$ d. Use part (b) to conclude that the harmonic series diverges. (Source: The College Mathematics Journal, 43, May 2012)
Problem 73
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{c n}{b n+1}=\frac{c}{b}, \text { for real numbers } b > 0 \text { and } c > 0$$
Problem 74
Use the formal definition of the limit of a sequence to prove the following limits. $$\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=0$$
Problem 74
Evaluate the series \(\sum_{k=1}^{\infty}\left(\frac{1}{2^{k}}-\frac{1}{2^{k+1}}\right)\) two ways. a. Use a telescoping series argument. b. Use a geometric series argument after first simplifying \(\frac{1}{2^{k}}-\frac{1}{2^{k+1}}\)
Problem 74
Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=0}^{\infty} \frac{k ! p^{k}}{(k+1)^{k}}$$ (Hint: Stirling's formula is useful: \(k ! \approx \sqrt{2 \pi k} k^{k} e^{-k}\) for large \(k .)\)
Problem 75
Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=1}^{\infty} \frac{k p^{k}}{k+1}$$