Chapter 4: Problem 92
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. $$a(t)=2 \cos t ; v(0)=1, s(0)=0$$
Chapter 4: Problem 92
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. $$a(t)=2 \cos t ; v(0)=1, s(0)=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFixed points of quadratics and quartics Let \(f(x)=a x(1-x)\) where \(a\) is a real number and \(0 \leq x \leq 1\). Recall that the fixed point of a function is a value of \(x\) such that \(f(x)= x\) (Exercises \(28-31\) ). a. Without using a calculator, find the values of \(a,\) with \(0 < a \leq 4,\) such that \(f\) has a fixed point. Give the fixed point in terms of \(a\) b. Consider the polynomial \(g(x)=f(f(x)) .\) Write \(g\) in terms of \(a\) and powers of \( x .\) What is its degree? c. Graph \(g\) for \(a=2,3,\) and 4 d. Find the number and location of the fixed points of \(g\) for \(a=2,3,\) and 4 on the interval \(0 \leq x \leq 1\).
Find the function \(F\) that satisfies the following differential equations and initial conditions. $$F^{\prime \prime}(x)=\cos x, F^{\prime}(0)=3, F(\pi)=4$$
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. $$a(t)=4 ; v(0)=-3, s(0)=2$$
Given the following velocity functions of an object moving along a line, find the position function with the given initial position. Then graph both the velocity and position functions. $$v(t)=6 t^{2}+4 t-10 ; s(0)=0$$
Population models The population of a species is given by the function \(P(t)=\frac{K t^{2}}{t^{2}+b},\) where \(t \geq 0\) is measured in years and \(K\) and \(b\) are positive real numbers. a. With \(K=300\) and \(b=30,\) what is \(\lim P(t),\) the carrying capacity of the population? b. With \(K=300\) and \(b=30,\) when does the maximum growth rate occur? c. For arbitrary positive values of \(K\) and \(b,\) when does the maximum growth rate occur (in terms of \(K\) and \(b\) )?
What do you think about this solution?
We value your feedback to improve our textbook solutions.