Chapter 4: Problem 90
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. $$a(t)=4 ; v(0)=-3, s(0)=2$$
Chapter 4: Problem 90
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. $$a(t)=4 ; v(0)=-3, s(0)=2$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLocate the critical points of the following functions. Then use the Second Derivative Test to determine (if possible) whether they correspond to local maxima or local minima. $$f(x)=x^{2} e^{-x}$$
More root finding Find all the roots of the following functions. Use preliminary analysis and graphing to determine good initial approximations. $$f(x)=\frac{x^{5}}{5}-\frac{x^{3}}{4}-\frac{1}{20}$$
The sinc function The sinc function, \(\operatorname{sinc}(x)=\frac{\sin x}{x}\) for \(x \neq 0\) \(\operatorname{sinc}(0)=1,\) appears frequently in signal- processing applications. a. Graph the sinc function on \([-2 \pi, 2 \pi]\) b. Locate the first local minimum and the first local maximum of sinc \((x),\) for \(x>0\)
Approximating square roots Let \(a>0\) be given and suppose we want to approximate \(\sqrt{a}\) using Newton's method. a. Explain why the square root problem is equivalent to finding the positive root of \(f(x)=x^{2}-a\) b. Show that Newton's method applied to this function takes the form (sometimes called the Babylonian method) $$x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right), \text { for } n=0,1,2, \ldots$$ c. How would you choose initial approximations to approximate \(\sqrt{13}\) and \(\sqrt{73} ?\) d. Approximate \(\sqrt{13}\) and \(\sqrt{73}\) with at least 10 significant digits.
a. For what values of \(b>0\) does \(b^{x}\) grow faster than \(e^{x}\) as \(x \rightarrow \infty ?\) b. Compare the growth rates of \(e^{x}\) and \(e^{a x}\) as \(x \rightarrow \infty,\) for \(a>0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.