Chapter 4: Problem 81
Determine whether the following statements are true and give an explanation or counterexample. a. By l'Hôpital's Rule, \(\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-1}=\lim _{x \rightarrow 2} \frac{1}{2 x}=\frac{1}{4}\) b. \(\lim _{x \rightarrow 0}(x \sin x)=\lim _{x \rightarrow 0} f(x) g(x)=\) \(\lim _{x \rightarrow 0} f^{\prime}(x) \lim _{x \rightarrow 0} g^{\prime}(x)=\left(\lim _{x \rightarrow 0} 1\right)\left(\lim _{x \rightarrow 0} \cos x\right)=1\) c. \(\lim _{x \rightarrow 0^{+}} x^{1 / x}\) is an indeterminate form. d. The number 1 raised to any fixed power is 1. Therefore, because \((1+x) \rightarrow 1\) as \(x \rightarrow 0,(1+x)^{1 / x} \rightarrow 1\) as \(x \rightarrow 0\) e. The functions \(\ln x^{100}\) and \(\ln x\) have comparable growth rates as \(x \rightarrow \infty\) f. The function \(e^{x}\) grows faster than \(2^{x}\) as \(x \rightarrow \infty\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.