Chapter 4: Problem 49
Basins of attraction Suppose \(f\) has a real root \(r\) and Newton's method is used to approximate \(r\) with an initial approximation \(x_{0} .\) The basin of attraction of \(r\) is the set of initial approximations that produce a sequence that converges to \(r .\) Points near \(r\) are often in the basin of attraction of \(r-\) but not always. Sometimes an initial approximation \(x_{0}\) may produce a sequence that doesn't converge, and sometimes an initial approximation \(x_{0}\) may produce a sequence that converges to a distant root. Let \(f(x)=(x+2)(x+1)(x-3),\) which has roots \(x=-2,-1\) and 3. Use Newton's method with initial approximations on the interval [-4,4] to determine (approximately) the basin of each root.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.