Chapter 4: Problem 4
Why do two different antiderivatives of a function differ by a constant?
Chapter 4: Problem 4
Why do two different antiderivatives of a function differ by a constant?
All the tools & learning materials you need for study success - in one app.
Get started for freea. For what values of \(b>0\) does \(b^{x}\) grow faster than \(e^{x}\) as \(x \rightarrow \infty ?\) b. Compare the growth rates of \(e^{x}\) and \(e^{a x}\) as \(x \rightarrow \infty,\) for \(a>0\)
Consider the limit \(\lim _{x \rightarrow \infty} \frac{\sqrt{a x+b}}{\sqrt{c x+d}},\) where \(a, b, c\) and \(d\) are positive real numbers. Show that I'Hôpital's Rule fails for this limit. Find the limit using another method.
A damped oscillator The displacement of a particular object as it bounces vertically up and down on a spring is given by \(y(t)=2.5 e^{-t} \cos 2 t,\) where the initial displacement is \(y(0)=2.5\) and \(y=0\) corresponds to the rest position (see figure). a. Find the time at which the object first passes the rest position, \(y=0\) b. Find the time and the displacement when the object reaches its lowest point. c. Find the time at which the object passes the rest position for the second time. d. Find the time and the displacement when the object reaches its high point for the second time.
Interpreting the derivative The graph of \(f^{\prime}\) on the interval [-3,2] is shown in the figure. a. On what interval(s) is \(f\) increasing? Decreasing? b. Find the critical points of \(f .\) Which critical points correspond to local maxima? Local minima? Neither? c. At what point(s) does \(f\) have an inflection point? d. On what interval(s) is \(f\) concave up? Concave down? e. Sketch the graph of \(f^{\prime \prime}\) f. Sketch one possible graph of \(f\)
More root finding Find all the roots of the following functions. Use preliminary analysis and graphing to determine good initial approximations. $$f(x)=\frac{x^{5}}{5}-\frac{x^{3}}{4}-\frac{1}{20}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.