Chapter 4: Problem 120
Verify the following indefinite integrals by differentiation. These integrals are derived in later chapters. $$\int x^{2} \cos x^{3} d x=\frac{1}{3} \sin x^{3}+C$$
Chapter 4: Problem 120
Verify the following indefinite integrals by differentiation. These integrals are derived in later chapters. $$\int x^{2} \cos x^{3} d x=\frac{1}{3} \sin x^{3}+C$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the limit \(\lim _{x \rightarrow \infty} \frac{\sqrt{a x+b}}{\sqrt{c x+d}},\) where \(a, b, c\) and \(d\) are positive real numbers. Show that I'Hôpital's Rule fails for this limit. Find the limit using another method.
Fixed points of quadratics and quartics Let \(f(x)=a x(1-x)\) where \(a\) is a real number and \(0 \leq x \leq 1\). Recall that the fixed point of a function is a value of \(x\) such that \(f(x)= x\) (Exercises \(28-31\) ). a. Without using a calculator, find the values of \(a,\) with \(0 < a \leq 4,\) such that \(f\) has a fixed point. Give the fixed point in terms of \(a\) b. Consider the polynomial \(g(x)=f(f(x)) .\) Write \(g\) in terms of \(a\) and powers of \( x .\) What is its degree? c. Graph \(g\) for \(a=2,3,\) and 4 d. Find the number and location of the fixed points of \(g\) for \(a=2,3,\) and 4 on the interval \(0 \leq x \leq 1\).
Locate the critical points of the following functions and use the Second Derivative Test to determine (if possible) whether they correspond to local maxima or local minima. $$f(x)=x^{3}+2 x^{2}+4 x-1$$
Determine the following indefinite integrals. Check your work by differentiation. $$\int\left(\csc ^{2} \theta+2 \theta^{2}-3 \theta\right) d \theta$$
Verify the following indefinite integrals by differentiation. These integrals are derived in later chapters. $$\int \frac{x}{\left(x^{2}-1\right)^{2}} d x=-\frac{1}{2\left(x^{2}-1\right)}+C$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.