Chapter 4: Problem 110
First Derivative Test is not exhaustive Sketch the graph of a (simple) nonconstant function \(f\) that has a local maximum at \(x=1,\) with \(f^{\prime}(1)=0,\) where \(f^{\prime}\) does not change sign from positive to negative as \(x\) increases through \(1 .\) Why can't the First Derivative Test be used to classify the critical point at \(x=1\) as a local maximum? How could the test be rephrased to account for such a critical point?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.