Chapter 4: Problem 105
Symmetry of cubics Consider the general cubic polynomial \(f(x)=x^{3}+a x^{2}+b x+c,\) where \(a, b,\) and \(c\) are real numbers. a. Show that \(f\) has exactly one inflection point and it occurs at \(x^{*}=-a / 3\) b. Show that \(f\) is an odd function with respect to the inflection point \(\left(x^{*}, f\left(x^{*}\right)\right) .\) This means that \(f\left(x^{*}\right)-f\left(x^{*}+x\right)=\) \(f\left(x^{*}-x\right)-f\left(x^{*}\right),\) for all \(x\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.