Chapter 4: Problem 102
Determine the following indefinite integrals. Check your work by differentiation. $$\int(\sqrt[3]{x^{2}}+\sqrt{x^{3}}) d x$$
Chapter 4: Problem 102
Determine the following indefinite integrals. Check your work by differentiation. $$\int(\sqrt[3]{x^{2}}+\sqrt{x^{3}}) d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeGraph several functions that satisfy the following differential equations. Then find and graph the particular function that satisfies the given initial condition. $$f^{\prime}(t)=1 / t ; f(1)=4$$
Demand functions and elasticity Economists use demand finctions to describe how much of a commodity can be sold at varying prices. For example, the demand function \(D(p)=500-10 p\) says that at a price of \(p=10,\) a quantity of \(D(10)=400\) units of the commodity can be sold. The elasticity \(E=\frac{d D}{d p} \frac{p}{D}\) of the demand gives the approximate percent change in the demand for every \(1 \%\) change in the price. (See Section 3.5 or the Guided Project Elasticity in Economics for more on demand functions and elasticity.) a. Compute the elasticity of the demand function \(D(p)=500-10 p\) b. If the price is \(\$ 12\) and increases by \(4.5 \%,\) what is the approximate percent change in the demand? c. Show that for the linear demand function \(D(p)=a-b p\) where \(a\) and \(b\) are positive real numbers, the elasticity is a decreasing function, for \(p \geq 0\) and \(p \neq a / b\) d. Show that the demand function \(D(p)=a / p^{b}\), where \(a\) and \(b\) are positive real numbers, has a constant elasticity for all positive prices.
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. $$a(t)=-32 ; v(0)=20, s(0)=0$$
A large tank is filled with water when an outflow valve is opened at \(t=0 .\) Water flows out at a rate, in gal/min, given by \(Q^{\prime}(t)=0.1\left(100-t^{2}\right),\) for \(0 \leq t \leq 10\) a. Find the amount of water \(Q(t)\) that has flowed out of the tank after \(t\) minutes, given the initial condition \(Q(0)=0\) b. Graph the flow function \(Q,\) for \(0 \leq t \leq 10\) c. How much water flows out of the tank in 10 min?
Find the solution of the following initial value problems. $$p^{\prime}(t)=10 e^{-t_{t}} ; p(0)=100$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.