Chapter 3: Problem 94
Logistic growth Scientists often use the logistic growth function \(P(t)=\frac{P_{0} K}{P_{0}+\left(K-P_{0}\right) e^{-r_{d}}}\) to model population growth, where \(P_{0}\) is the initial population at time \(t=0, K\) is the carrying capacity, and \(r_{0}\) is the base growth rate. The carrying capacity is a theoretical upper bound on the total population that the surrounding environment can support. The figure shows the sigmoid (S-shaped) curve associated with a typical logistic model. World population (part 1 ) The population of the world reached 6 billion in \(1999(t=0)\). Assume Earth's carrying capacity is 15 billion and the base growth rate is \(r_{0}=0.025\) per year. a. Write a logistic growth function for the world's population (in billions) and graph your equation on the interval \(0 \leq t \leq 200\) using a graphing utility. b. What will the population be in the year 2020? When will it reach 12 billion?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.