Chapter 3: Problem 88
Proof by induction: derivative of \(e^{k x}\) for positive integers \(k\) Proof by induction is a method in which one begins by showing that a statement, which involves positive integers, is true for a particular value (usually \(k=1\) ). In the second step, the statement is assumed to be true for \(k=n\), and the statement is proved for \(k=n+1,\) which concludes the proof. a. Show that \(\frac{d}{d x}\left(e^{k x}\right)=k e^{k x},\) for \(k=1\) b. Assume the rule is true for \(k=n\) (that is, assume \(\left.\frac{d}{d x}\left(e^{n x}\right)=n e^{n x}\right),\) and show this assumption implies that the rule is true for \(k=n+1\). (Hint: Write \(e^{(n+1) x}\) as the product of two functions and use the Product Rule.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.