Chapter 3: Problem 86
\(F=f / g\) be the quotient of two functions that are differentiable at \(x\) a. Use the definition of \(F^{\prime}\) to show that $$ \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x+h)}{h g(x+h) g(x)} $$ b. Now add \(-f(x) g(x)+f(x) g(x)\) (which equals 0 ) to the numerator in the preceding limit to obtain $$\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{h g(x+h) g(x)}$$ Use this limit to obtain the Quotient Rule. c. Explain why \(F^{\prime}=(f / g)^{\prime}\) exists, whenever \(g(x) \neq 0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.