Chapter 3: Problem 73
Find \(\frac{d^{2} y}{d x^{2}}\) for the following functions. $$y=e^{-2 x^{2}}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 73
Find \(\frac{d^{2} y}{d x^{2}}\) for the following functions. $$y=e^{-2 x^{2}}$$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe lateral surface area of a cone of radius \(r\) and height \(h\) (the surface area excluding the base) is \(A=\pi r \sqrt{r^{2}+h^{2}}\) a. Find \(d r / d h\) for a cone with a lateral surface area of $$ A=1500 \pi $$ b. Evaluate this derivative when \(r=30\) and \(h=40\)
Product Rule for three functions Assume that \(f, g,\) and \(h\) are differentiable at \(x\) a. Use the Product Rule (twice) to find a formula for \(\frac{d}{d x}(f(x) g(x) h(x))\) b. Use the formula in (a) to find \(\frac{d}{d x}\left(e^{2 x}(x-1)(x+3)\right)\)
A woman attached to a bungee cord jumps from a bridge that is \(30 \mathrm{m}\) above a river. Her height in meters above the river \(t\) seconds after the jump is \(y(t)=15\left(1+e^{-t} \cos t\right),\) for \(t \geq 0\). a. Determine her velocity at \(t=1\) and \(t=3\). b. Use a graphing utility to determine when she is moving downward and when she is moving upward during the first 10 s. c. Use a graphing utility to estimate the maximum upward velocity.
Tangency question It is easily verified that the graphs of \(y=x^{2}\) and \(y=e^{x}\) have no points of intersection (for \(x>0\) ), and the graphs of \(y=x^{3}\) and \(y=e^{x}\) have two points of intersection. It follows that for some real number \(2
0 \) ). Using analytical and/or graphical methods, determine \(p\) and the coordinates of the single point of intersection.
The population of a culture of cells after \(t\) days is approximated by the function \(P(t)=\frac{1600}{1+7 e^{-0.02 t}},\) for \(t \geq 0\). a. Graph the population function. b. What is the average growth rate during the first 10 days? c. Looking at the graph, when does the growth rate appear to be a maximum? d. Differentiate the population function to determine the growth rate function \(P^{\prime}(t)\). e. Graph the growth rate. When is it a maximum and what is the population at the time that the growth rate is a maximum?
What do you think about this solution?
We value your feedback to improve our textbook solutions.