Chapter 3: Problem 57
A thin copper rod, 4 meters in length, is heated at its midpoint, and the ends are held at a constant temperature of \(0^{\circ} .\) When the temperature reaches equilibrium, the temperature profile is given by \(T(x)=40 x(4-x),\) where \(0 \leq x \leq 4\) is the position along the rod. The heat flux at a point on the rod equals \(-k T^{\prime}(x),\) where \(k>0\) is a constant. If the heat flux is positive at a point, heat moves in the positive \(x\) -direction at that point, and if the heat flux is negative, heat moves in the negative \(x\) -direction. a. With \(k=1,\) what is the heat flux at \(x=1 ?\) At \(x=3 ?\) b. For what values of \(x\) is the heat flux negative? Positive? c. Explain the statement that heat flows out of the rod at its ends.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.