Chapter 3: Problem 55
A trough in the shape of a half cylinder has length \(5 \mathrm{m}\) and radius \(1 \mathrm{m}\). The trough is full of water when a valve is opened, and water flows out of the bottom of the trough at a rate of \(1.5 \mathrm{m}^{3} / \mathrm{hr}\) (see figure). (Hint: The area of a sector of a circle of a radius \(r\) subtended by an angle \(\theta\) is \(r^{2} \theta / 2 .\) ) a. How fast is the water level changing when the water level is \(0.5 \mathrm{m}\) from the bottom of the trough? b. What is the rate of change of the surface area of the water when the water is \(0.5 \mathrm{m}\) deep?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.