Chapter 3: Problem 50
Earth's atmospheric pressure decreases with altitude from a sea level pressure of 1000 millibars (a unit of pressure used by meteorologists). Letting \(z\) be the height above Earth's surface (sea level) in \(\mathrm{km}\), the atmospheric pressure is modeled by \(p(z)=1000 e^{-z / 10}.\) a. Compute the pressure at the summit of Mt. Everest which has an elevation of roughly \(10 \mathrm{km}\). Compare the pressure on Mt. Everest to the pressure at sea level. b. Compute the average change in pressure in the first \(5 \mathrm{km}\) above Earth's surface. c. Compute the rate of change of the pressure at an elevation of \(5 \mathrm{km}\). d. Does \(p^{\prime}(z)\) increase or decrease with \(z\) ? Explain. e. What is the meaning of \(\lim _{z \rightarrow \infty} p(z)=0 ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.