Chapter 3: Problem 49
A spring hangs from the ceiling at equilibrium with a mass attached to its end. Suppose you pull downward on the mass and release it 10 inches below its equilibrium position with an upward push. The distance \(x\) (in inches) of the mass from its equilibrium position after \(t\) seconds is given by the function \(x(t)=10 \sin t-10 \cos t,\) where \(x\) is positive when the mass is above the equilibrium position. a. Graph and interpret this function. b. Find \(\frac{d x}{d t}\) and interpret the meaning of this derivative. c. At what times is the velocity of the mass zero? d. The function given here is a model for the motion of an object on a spring. In what ways is this model unrealistic?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.