Chapter 3: Problem 47
Find \(y^{\prime \prime}\) for the following functions. $$y=\sec x \csc x$$
Chapter 3: Problem 47
Find \(y^{\prime \prime}\) for the following functions. $$y=\sec x \csc x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIdentifying functions from an equation. The following equations implicitly define one or more functions. a. Find \(\frac{d y}{d x}\) using implicit differentiation. b. Solve the given equation for \(y\) to identify the implicitly defined functions \(y=f_{1}(x), y=f_{2}(x), \ldots\) c. Use the functions found in part (b) to graph the given equation. $$x^{4}=2\left(x^{2}-y^{2}\right) \text { (eight curve) }$$
Tangent lines and exponentials. Assume \(b\) is given with \(b>0\) and \(b \neq 1 .\) Find the \(y\) -coordinate of the point on the curve \(y=b^{x}\) at which the tangent line passes through the origin. (Source: The College Mathematics Journal, 28, Mar 1997).
Tangency question It is easily verified that the graphs of \(y=1.1^{x}\) and \(y=x\) have two points of intersection, and the graphs of \(y=2^{x}\) and \(y=x\) have no points of intersection. It follows that for some real number \(1
A thin copper rod, 4 meters in length, is heated at its midpoint, and the ends are held at a constant temperature of \(0^{\circ} .\) When the temperature reaches equilibrium, the temperature profile is given by \(T(x)=40 x(4-x),\) where \(0 \leq x \leq 4\) is the position along the rod. The heat flux at a point on the rod equals \(-k T^{\prime}(x),\) where \(k>0\) is a constant. If the heat flux is positive at a point, heat moves in the positive \(x\) -direction at that point, and if the heat flux is negative, heat moves in the negative \(x\) -direction. a. With \(k=1,\) what is the heat flux at \(x=1 ?\) At \(x=3 ?\) b. For what values of \(x\) is the heat flux negative? Positive? c. Explain the statement that heat flows out of the rod at its ends.
The position (in meters) of a marble rolling up a long incline is given by \(s=\frac{100 t}{t+1},\) where \(t\) is measured in seconds and \(s=0\) is the starting point. a. Graph the position function. b. Find the velocity function for the marble. c. Graph the velocity function and give a description of the motion of the marble. d. At what time is the marble 80 m from its starting point? e. At what time is the velocity \(50 \mathrm{m} / \mathrm{s} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.