Chapter 3: Problem 47
A store manager estimates that the demand for an energy drink decreases with increasing price according to the function \(d(p)=\frac{100}{p^{2}+1},\) which means that at price \(p\) (in dollars), \(d(p)\) units can be sold. The revenue generated at price \(p\) is \(R(p)=p \cdot d(p)\) (price multiplied by number of units). a. Find and graph the revenue function. b. Find and graph the marginal revenue \(R^{\prime}(p)\). c. From the graphs of \(R\) and \(R^{\prime}\), estimate the price that should be charged to maximize the revenue.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.