Chapter 3: Problem 42
Economists use production functions to describe how the output of a system varies with respect to another variable such as labor or capital. For example, the production function \(P(L)=200 L+10 L^{2}-L^{3}\) gives the output of a system as a function of the number of laborers \(L\). The average product \(A(L)\) is the average output per laborer when \(L\) laborers are working; that is \(A(L)=P(L) / L\). The marginal product \(M(L)\) is the approximate change in output when one additional laborer is added to \(L\) laborers; that is, \(M(L)=\frac{d P}{d L}\). a. For the given production function, compute and graph \(P, A,\) and \(M\). b. Suppose the peak of the average product curve occurs at \(L=L_{0},\) so that \(A^{\prime}\left(L_{0}\right)=0 .\) Show that for a general production function, \(M\left(L_{0}\right)=A\left(L_{0}\right)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.