Chapter 3: Problem 38
a. Find an equation of the line tangent to the given curve at a. b. Use a graphing utility to graph the curve and the tangent line on the same set of axes. $$y=\frac{e^{x}}{4}-x ; a=0$$
Chapter 3: Problem 38
a. Find an equation of the line tangent to the given curve at a. b. Use a graphing utility to graph the curve and the tangent line on the same set of axes. $$y=\frac{e^{x}}{4}-x ; a=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeGeneral logarithmic and exponential derivatives Compute the following derivatives. Use logarithmic differentiation where appropriate. $$\frac{d}{d x}(2 x)^{2 x}$$.
Vertical tangent lines a. Determine the points where the curve \(x+y^{2}-y=1\) has a vertical tangent line (see Exercise 53 ). b. Does the curve have any horizontal tangent lines? Explain.
General logarithmic and exponential derivatives Compute the following derivatives. Use logarithmic differentiation where appropriate. $$\frac{d}{d x}\left(1+x^{2}\right)^{\sin x}$$
Prove the following identities and give the values of \(x\) for which they are true. $$\sin \left(2 \sin ^{-1} x\right)=2 x \sqrt{1-x^{2}}$$
Assuming the first and second derivatives of \(f\) and \(g\) exist at \(x\), find a formula for \(\frac{d^{2}}{d x^{2}}(f(x) g(x))\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.