Chapter 3: Problem 37
Find the derivative of the following functions. $$y=\frac{\cot x}{1+\csc x}$$
Chapter 3: Problem 37
Find the derivative of the following functions. $$y=\frac{\cot x}{1+\csc x}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeRecall that \(f\) is even if \(f(-x)=f(x),\) for all \(x\) in the domain of \(f,\) and \(f\) is odd if \(f(-x)=-f(x),\) for all \(x\) in the domain of \(f\). a. If \(f\) is a differentiable, even function on its domain, determine whether \(f^{\prime}\) is even, odd, or neither. b. If \(f\) is a differentiable, odd function on its domain, determine whether \(f^{\prime}\) is even, odd, or neither.
A lighthouse stands 500 m off a straight shore and the focused beam of its light revolves four times each minute. As shown in the figure, \(P\) is the point on shore closest to the lighthouse and \(Q\) is a point on the shore 200 m from \(P\). What is the speed of the beam along the shore when it strikes the point \(Q ?\) Describe how the speed of the beam along the shore varies with the distance between \(P\) and \(Q\). Neglect the height of the lighthouse.
a. Differentiate both sides of the identity \(\cos 2 t=\cos ^{2} t-\sin ^{2} t\) to prove that \(\sin 2 t=2 \sin t \cos t\). b. Verify that you obtain the same identity for sin \(2 t\) as in part (a) if you differentiate the identity \(\cos 2 t=2 \cos ^{2} t-1\). c. Differentiate both sides of the identity \(\sin 2 t=2 \sin t \cos t\) to prove that \(\cos 2 t=\cos ^{2} t-\sin ^{2} t\).
Use the properties of logarithms to simplify the following functions before computing \(f^{\prime}(x)\). $$f(x)=\log _{2} \frac{8}{\sqrt{x+1}}$$
Identifying functions from an equation. The following equations implicitly define one or more functions. a. Find \(\frac{d y}{d x}\) using implicit differentiation. b. Solve the given equation for \(y\) to identify the implicitly defined functions \(y=f_{1}(x), y=f_{2}(x), \ldots\) c. Use the functions found in part (b) to graph the given equation. $$y^{2}(x+2)=x^{2}(6-x) \text { (trisectrix) }$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.