Chapter 3: Problem 37
Find the derivative of the following functions. $$f(x)=3 x^{-9}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 37
Find the derivative of the following functions. $$f(x)=3 x^{-9}$$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freea. Use derivatives to show that \(\tan ^{-1} \frac{2}{n^{2}}\) and \(\tan ^{-1}(n+1)-\tan ^{-1}(n-1)\) differ by a constant. b. Prove that \(\tan ^{-1} \frac{2}{n^{2}}=\tan ^{-1}(n+1)-\tan ^{-1}(n-1)\)
Derivative of \(u(x)^{v(x)}\) Use logarithmic differentiation to prove that $$\frac{d}{d x}\left(u(x)^{v(x)}\right)=u(x)^{v(x)}\left(\frac{d v}{d x} \ln u(x)+\frac{v(x)}{u(x)} \frac{d u}{d x}\right)$$.
Calculating limits exactly Use the definition of the derivative to evaluate the following limits. $$\lim _{x \rightarrow 2} \frac{5^{x}-25}{x-2}$$
\(F=f / g\) be the quotient of two functions that are differentiable at \(x\) a. Use the definition of \(F^{\prime}\) to show that $$ \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x+h)}{h g(x+h) g(x)} $$ b. Now add \(-f(x) g(x)+f(x) g(x)\) (which equals 0 ) to the numerator in the preceding limit to obtain $$\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{h g(x+h) g(x)}$$ Use this limit to obtain the Quotient Rule. c. Explain why \(F^{\prime}=(f / g)^{\prime}\) exists, whenever \(g(x) \neq 0\)
a. Determine an equation of the tangent line and normal line at the given point \(\left(x_{0}, y_{0}\right)\) on the following curves. b. Graph the tangent and normal lines on the given graph. \(\left(x^{2}+y^{2}\right)^{2}=\frac{25}{3}\left(x^{2}-y^{2}\right)\) \(\left(x_{0}, y_{0}\right)=(2,-1)\) (lemniscate of Bernoulli)
What do you think about this solution?
We value your feedback to improve our textbook solutions.