Chapter 3: Problem 37
a. Find an equation of the line tangent to the given curve at a. b. Use a graphing utility to graph the curve and the tangent line on the same set of axes. $$y=e^{x} ; a=\ln 3$$
Chapter 3: Problem 37
a. Find an equation of the line tangent to the given curve at a. b. Use a graphing utility to graph the curve and the tangent line on the same set of axes. $$y=e^{x} ; a=\ln 3$$
All the tools & learning materials you need for study success - in one app.
Get started for freeTangent lines and exponentials. Assume \(b\) is given with \(b>0\) and \(b \neq 1 .\) Find the \(y\) -coordinate of the point on the curve \(y=b^{x}\) at which the tangent line passes through the origin. (Source: The College Mathematics Journal, 28, Mar 1997).
Gone fishing When a reservoir is created by a new dam, 50 fish are introduced into the reservoir, which has an estimated carrying capacity of 8000 fish. A logistic model of the fish population is \(P(t)=\frac{400,000}{50+7950 e^{-0.5 t}},\) where \(t\) is measured in years.c. How fast (in fish per year) is the population growing at \(t=0 ?\) At \(t=5 ?\) d. Graph \(P^{\prime}\) and use the graph to estimate the year in which the population is growing fastest.
Use the properties of logarithms to simplify the following functions before computing \(f^{\prime}(x)\). $$f(x)=\ln \left(\sec ^{4} x \tan ^{2} x\right)$$
The bottom of a large theater screen is \(3 \mathrm{ft}\) above your eye level and the top of the screen is \(10 \mathrm{ft}\) above your eye level. Assume you walk away from the screen (perpendicular to the screen) at a rate of \(3 \mathrm{ft} / \mathrm{s}\) while looking at the screen. What is the rate of change of the viewing angle \(\theta\) when you are \(30 \mathrm{ft}\) from the wall on which the screen hangs, assuming the floor is horizontal (see figure)?
Work carefully Proceed with caution when using implicit differentiation to find points at which a curve has a specified slope. For the following curves, find the points on the curve (if they exist) at which the tangent line is horizontal or vertical. Once you have found possible points, make sure they actually lie on the curve. Confirm your results with a graph. $$x^{2}\left(3 y^{2}-2 y^{3}\right)=4$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.