Chapter 3: Problem 3
Why are both the \(x\) -coordinate and the \(y\) -coordinate generally needed to find the slope of the tangent line at a point for an implicitly defined function?
Chapter 3: Problem 3
Why are both the \(x\) -coordinate and the \(y\) -coordinate generally needed to find the slope of the tangent line at a point for an implicitly defined function?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn observer is \(20 \mathrm{m}\) above the ground floor of a large hotel atrium looking at a glass-enclosed elevator shaft that is \(20 \mathrm{m}\) horizontally from the observer (see figure). The angle of elevation of the elevator is the angle that the observer's line of sight makes with the horizontal (it may be positive or negative). Assuming that the elevator rises at a rate of \(5 \mathrm{m} / \mathrm{s}\), what is the rate of change of the angle of elevation when the elevator is \(10 \mathrm{m}\) above the ground? When the elevator is \(40 \mathrm{m}\) above the ground?
Two boats leave a port at the same time, one traveling west at \(20 \mathrm{mi} / \mathrm{hr}\) and the other traveling southwest at \(15 \mathrm{mi} / \mathrm{hr} .\) At what rate is the distance between them changing 30 min after they leave the port?
General logarithmic and exponential derivatives Compute the following derivatives. Use logarithmic differentiation where appropriate. $$\frac{d}{d x}\left(x^{10 x}\right)$$
Find the following higher-order derivatives. $$\left.\frac{d^{3}}{d x^{3}}\left(x^{4.2}\right)\right|_{x=1}$$
Jean and Juan run a one-lap race on a circular track. Their angular positions on the track during the race are given by the functions \(\theta(t)\) and \(\varphi(t),\) respectively, where \(0 \leq t \leq 4\) and \(t\) is measured in minutes (see figure). These angles are measured in radians, where \(\theta=\varphi=0\) represent the starting position and \(\theta=\varphi=2 \pi\) represent the finish position. The angular velocities of the runners are \(\theta^{\prime}(t)\) and \(\varphi^{\prime}(t)\). a. Compare in words the angular velocity of the two runners and the progress of the race. b. Which runner has the greater average angular velocity? c. Who wins the race? d. Jean's position is given by \(\theta(t)=\pi t^{2} / 8 .\) What is her angular velocity at \(t=2\) and at what time is her angular velocity the greatest? e. Juan's position is given by \(\varphi(t)=\pi t(8-t) / 8 .\) What is his angular velocity at \(t=2\) and at what time is his angular velocity the greatest?
What do you think about this solution?
We value your feedback to improve our textbook solutions.