Chapter 3: Problem 3
What is the slope of the line tangent to the graph of \(y=\tan ^{-1} x\) at \(x=-2 ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 3
What is the slope of the line tangent to the graph of \(y=\tan ^{-1} x\) at \(x=-2 ?\)
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeJean and Juan run a one-lap race on a circular track. Their angular positions on the track during the race are given by the functions \(\theta(t)\) and \(\varphi(t),\) respectively, where \(0 \leq t \leq 4\) and \(t\) is measured in minutes (see figure). These angles are measured in radians, where \(\theta=\varphi=0\) represent the starting position and \(\theta=\varphi=2 \pi\) represent the finish position. The angular velocities of the runners are \(\theta^{\prime}(t)\) and \(\varphi^{\prime}(t)\). a. Compare in words the angular velocity of the two runners and the progress of the race. b. Which runner has the greater average angular velocity? c. Who wins the race? d. Jean's position is given by \(\theta(t)=\pi t^{2} / 8 .\) What is her angular velocity at \(t=2\) and at what time is her angular velocity the greatest? e. Juan's position is given by \(\varphi(t)=\pi t(8-t) / 8 .\) What is his angular velocity at \(t=2\) and at what time is his angular velocity the greatest?
An observer stands \(20 \mathrm{m}\) from the bottom of a 10 -m-tall Ferris wheel on a line that is perpendicular to the face of the Ferris wheel. The wheel revolves at a rate of \(\pi \mathrm{rad} / \mathrm{min},\) and the observer's line of sight with a specific seat on the wheel makes an angle \(\theta\) with the ground (see figure). Forty seconds after that seat leaves the lowest point on the wheel, what is the rate of change of \(\theta ?\) Assume the observer's eyes are level with the bottom of the wheel.
The flow of a small stream is monitored for 90 days between May 1 and August 1. The total water that flows past a gauging station is given by $$V(t)=\left\\{\begin{array}{ll}\frac{4}{5} t^{2} & \text { if } 0 \leq t<45 \\\\-\frac{4}{5}\left(t^{2}-180 t+4050\right) & \text { if } 45 \leq t<90, \end{array}\right.$$ where \(V\) is measured in cubic feet and \(t\) is measured in days, with \(t=0\) corresponding to May 1. a. Graph the volume function. b. Find the flow rate function \(V^{\prime}(t)\) and graph it. What are the units of the flow rate? c. Describe the flow of the stream over the 3 -month period. Specifically, when is the flow rate a maximum?
a. Determine an equation of the tangent line and normal line at the given point \(\left(x_{0}, y_{0}\right)\) on the following curves. b. Graph the tangent and normal lines on the given graph. \(\left(x^{2}+y^{2}-2 x\right)^{2}=2\left(x^{2}+y^{2}\right)\) \(\left(x_{0}, y_{0}\right)=(2,2)\) (limaçon of Pascal)
Logistic growth Scientists often use the logistic growth function \(P(t)=\frac{P_{0} K}{P_{0}+\left(K-P_{0}\right) e^{-r_{d}}}\) to model population growth, where \(P_{0}\) is the initial population at time \(t=0, K\) is the carrying capacity, and \(r_{0}\) is the base growth rate. The carrying capacity is a theoretical upper bound on the total population that the surrounding environment can support. The figure shows the sigmoid (S-shaped) curve associated with a typical logistic model. World population (part 1 ) The population of the world reached 6 billion in \(1999(t=0)\). Assume Earth's carrying capacity is 15 billion and the base growth rate is \(r_{0}=0.025\) per year. a. Write a logistic growth function for the world's population (in billions) and graph your equation on the interval \(0 \leq t \leq 200\) using a graphing utility. b. What will the population be in the year 2020? When will it reach 12 billion?
What do you think about this solution?
We value your feedback to improve our textbook solutions.