Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(f\) is differentiable at \(a,\) must \(f\) be continuous at \(a ?\)

Short Answer

Expert verified
Answer: Yes, if a function is differentiable at a point, it must be continuous at that point. This is because differentiability implies the existence of a limit of the difference quotient, which in turn implies continuity at the given point.

Step by step solution

01

Defining continuity at a point

A function \(f\) is continuous at \(a\) if: 1) The limit of the function as x approaches a exists: \(\lim_{x\to a} f(x)\) exists 2) \(f(a)\) is defined 3) \(\lim_{x\to a} f(x) = f(a)\)
02

Defining differentiability at a point

A function \(f\) is differentiable at \(a\) if its derivative exists at that point, which is denoted as \(f'(a)\). In other words, the limit of the difference quotient as x approaches a must exist: $$\lim_{x\to a} \frac{f(x) - f(a)}{x-a}$$
03

Relationship between continuity and differentiability

We have the definitions of continuity and differentiability in front of us. The key to understanding their relationship lies in differentiability. If a function is differentiable at a point, it means that the limit of the difference quotient as x approaches that point must exist. Moreover, if this limit exists, it implies that the function must also be continuous at that point. This is because, if a function is not continuous, its limit might not exist, contradicting the differentiability condition.
04

Conclusion

If a function \(f\) is differentiable at a point \(a\), it must be continuous at that point too. This is because, for differentiability, the limit of the difference quotient must exist, and this can only happen if the function is continuous at that point. Therefore, the answer to the question is yes: if a function is differentiable at a point, it must be continuous at that point.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The bottom of a large theater screen is \(3 \mathrm{ft}\) above your eye level and the top of the screen is \(10 \mathrm{ft}\) above your eye level. Assume you walk away from the screen (perpendicular to the screen) at a rate of \(3 \mathrm{ft} / \mathrm{s}\) while looking at the screen. What is the rate of change of the viewing angle \(\theta\) when you are \(30 \mathrm{ft}\) from the wall on which the screen hangs, assuming the floor is horizontal (see figure)?

A thin copper rod, 4 meters in length, is heated at its midpoint, and the ends are held at a constant temperature of \(0^{\circ} .\) When the temperature reaches equilibrium, the temperature profile is given by \(T(x)=40 x(4-x),\) where \(0 \leq x \leq 4\) is the position along the rod. The heat flux at a point on the rod equals \(-k T^{\prime}(x),\) where \(k>0\) is a constant. If the heat flux is positive at a point, heat moves in the positive \(x\) -direction at that point, and if the heat flux is negative, heat moves in the negative \(x\) -direction. a. With \(k=1,\) what is the heat flux at \(x=1 ?\) At \(x=3 ?\) b. For what values of \(x\) is the heat flux negative? Positive? c. Explain the statement that heat flows out of the rod at its ends.

Logistic growth Scientists often use the logistic growth function \(P(t)=\frac{P_{0} K}{P_{0}+\left(K-P_{0}\right) e^{-r_{d}}}\) to model population growth, where \(P_{0}\) is the initial population at time \(t=0, K\) is the carrying capacity, and \(r_{0}\) is the base growth rate. The carrying capacity is a theoretical upper bound on the total population that the surrounding environment can support. The figure shows the sigmoid (S-shaped) curve associated with a typical logistic model. World population (part 1 ) The population of the world reached 6 billion in \(1999(t=0)\). Assume Earth's carrying capacity is 15 billion and the base growth rate is \(r_{0}=0.025\) per year. a. Write a logistic growth function for the world's population (in billions) and graph your equation on the interval \(0 \leq t \leq 200\) using a graphing utility. b. What will the population be in the year 2020? When will it reach 12 billion?

Two boats leave a port at the same time, one traveling west at \(20 \mathrm{mi} / \mathrm{hr}\) and the other traveling southwest at \(15 \mathrm{mi} / \mathrm{hr} .\) At what rate is the distance between them changing 30 min after they leave the port?

One of the Leibniz Rules One of several Leibniz Rules in calculus deals with higher-order derivatives of products. Let \((f g)^{(n)}\) denote the \(n\) th derivative of the product \(f g,\) for \(n \geq 1\) a. Prove that \((f g)^{(2)}=f^{\prime \prime} g+2 f^{\prime} g^{\prime}+f g^{\prime \prime}\) b. Prove that, in general, $$(f g)^{(n)}=\sum_{k=0}^{n}\left(\begin{array}{l} n \\ k \end{array}\right) f^{(k)} g^{(n-k)}$$ where \(\left(\begin{array}{l}n \\ k\end{array}\right)=\frac{n !}{k !(n-k) !}\) are the binomial coefficients. c. Compare the result of (b) to the expansion of \((a+b)^{n}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free