Chapter 3: Problem 3
Explain why the slope of the tangent line can be interpreted as an instantaneous rate of change.
Chapter 3: Problem 3
Explain why the slope of the tangent line can be interpreted as an instantaneous rate of change.
All the tools & learning materials you need for study success - in one app.
Get started for freeTangent lines and exponentials. Assume \(b\) is given with \(b>0\) and \(b \neq 1 .\) Find the \(y\) -coordinate of the point on the curve \(y=b^{x}\) at which the tangent line passes through the origin. (Source: The College Mathematics Journal, 28, Mar 1997).
Vertical tangent lines a. Determine the points at which the curve \(x+y^{3}-y=1\) has a vertical tangent line (see Exercise 52 ). b. Does the curve have any horizontal tangent lines? Explain.
Product Rule for three functions Assume that \(f, g,\) and \(h\) are differentiable at \(x\) a. Use the Product Rule (twice) to find a formula for \(\frac{d}{d x}(f(x) g(x) h(x))\) b. Use the formula in (a) to find \(\frac{d}{d x}\left(e^{2 x}(x-1)(x+3)\right)\)
The total energy in megawatt-hr (MWh) used by a town is given by $$E(t)=400 t+\frac{2400}{\pi} \sin \frac{\pi t}{12},$$ where \(t \geq 0\) is measured in hours, with \(t=0\) corresponding to noon. a. Find the power, or rate of energy consumption, \(P(t)=E^{\prime}(t)\) in units of megawatts (MW). b. At what time of day is the rate of energy consumption a maximum? What is the power at that time of day? c. At what time of day is the rate of energy consumption a minimum? What is the power at that time of day? d. Sketch a graph of the power function reflecting the times at which energy use is a minimum or maximum.
Jean and Juan run a one-lap race on a circular track. Their angular positions on the track during the race are given by the functions \(\theta(t)\) and \(\varphi(t),\) respectively, where \(0 \leq t \leq 4\) and \(t\) is measured in minutes (see figure). These angles are measured in radians, where \(\theta=\varphi=0\) represent the starting position and \(\theta=\varphi=2 \pi\) represent the finish position. The angular velocities of the runners are \(\theta^{\prime}(t)\) and \(\varphi^{\prime}(t)\). a. Compare in words the angular velocity of the two runners and the progress of the race. b. Which runner has the greater average angular velocity? c. Who wins the race? d. Jean's position is given by \(\theta(t)=\pi t^{2} / 8 .\) What is her angular velocity at \(t=2\) and at what time is her angular velocity the greatest? e. Juan's position is given by \(\varphi(t)=\pi t(8-t) / 8 .\) What is his angular velocity at \(t=2\) and at what time is his angular velocity the greatest?
What do you think about this solution?
We value your feedback to improve our textbook solutions.