Chapter 3: Problem 2
Explain why the slope of a secant line can be interpreted as an average rate of change.
Chapter 3: Problem 2
Explain why the slope of a secant line can be interpreted as an average rate of change.
All the tools & learning materials you need for study success - in one app.
Get started for freeA lighthouse stands 500 m off a straight shore and the focused beam of its light revolves four times each minute. As shown in the figure, \(P\) is the point on shore closest to the lighthouse and \(Q\) is a point on the shore 200 m from \(P\). What is the speed of the beam along the shore when it strikes the point \(Q ?\) Describe how the speed of the beam along the shore varies with the distance between \(P\) and \(Q\). Neglect the height of the lighthouse.
Suppose you forgot the Quotient Rule for calculating \(\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) .\) Use the Chain Rule and Product Rule with the identity \(\frac{f(x)}{g(x)}=f(x)(g(x))^{-1}\) to derive the Quotient Rule.
Two boats leave a port at the same time, one traveling west at \(20 \mathrm{mi} / \mathrm{hr}\) and the other traveling southwest at \(15 \mathrm{mi} / \mathrm{hr} .\) At what rate is the distance between them changing 30 min after they leave the port?
Let \(f(x)=\cos ^{2} x+\sin ^{2} x\). a. Use the Chain Rule to show that \(f^{\prime}(x)=0\). b. Assume that if \(f^{\prime}=0,\) then \(f\) is a constant function. Calculate \(f(0)\) and use it with part (a) to explain why \(\cos ^{2} x+\sin ^{2} x=1\).
Proof by induction: derivative of \(e^{k x}\) for positive integers \(k\) Proof by induction is a method in which one begins by showing that a statement, which involves positive integers, is true for a particular value (usually \(k=1\) ). In the second step, the statement is assumed to be true for \(k=n\), and the statement is proved for \(k=n+1,\) which concludes the proof. a. Show that \(\frac{d}{d x}\left(e^{k x}\right)=k e^{k x},\) for \(k=1\) b. Assume the rule is true for \(k=n\) (that is, assume \(\left.\frac{d}{d x}\left(e^{n x}\right)=n e^{n x}\right),\) and show this assumption implies that the rule is true for \(k=n+1\). (Hint: Write \(e^{(n+1) x}\) as the product of two functions and use the Product Rule.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.