Chapter 3: Problem 103
Calculating limits exactly Use the definition of the derivative to evaluate the following limits. $$\lim _{h \rightarrow 0} \frac{(3+h)^{3+h}-27}{h}$$
Chapter 3: Problem 103
Calculating limits exactly Use the definition of the derivative to evaluate the following limits. $$\lim _{h \rightarrow 0} \frac{(3+h)^{3+h}-27}{h}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIdentifying functions from an equation. The following equations implicitly define one or more functions. a. Find \(\frac{d y}{d x}\) using implicit differentiation. b. Solve the given equation for \(y\) to identify the implicitly defined functions \(y=f_{1}(x), y=f_{2}(x), \ldots\) c. Use the functions found in part (b) to graph the given equation. $$y^{2}(x+2)=x^{2}(6-x) \text { (trisectrix) }$$
General logarithmic and exponential derivatives Compute the following derivatives. Use logarithmic differentiation where appropriate. $$\frac{d}{d x}\left(1+x^{2}\right)^{\sin x}$$
An observer is \(20 \mathrm{m}\) above the ground floor of a large hotel atrium looking at a glass-enclosed elevator shaft that is \(20 \mathrm{m}\) horizontally from the observer (see figure). The angle of elevation of the elevator is the angle that the observer's line of sight makes with the horizontal (it may be positive or negative). Assuming that the elevator rises at a rate of \(5 \mathrm{m} / \mathrm{s}\), what is the rate of change of the angle of elevation when the elevator is \(10 \mathrm{m}\) above the ground? When the elevator is \(40 \mathrm{m}\) above the ground?
Suppose a large company makes 25,000 gadgets per year in batches of \(x\) items at a time. After analyzing setup costs to produce each batch and taking into account storage costs, it has been determined that the total cost \(C(x)\) of producing 25,000 gadgets in batches of \(x\) items at a time is given by $$C(x)=1,250,000+\frac{125,000,000}{x}+1.5 x.$$ a. Determine the marginal cost and average cost functions. Graph and interpret these functions. b. Determine the average cost and marginal cost when \(x=5000\). c. The meaning of average cost and marginal cost here is different from earlier examples and exercises. Interpret the meaning of your answer in part (b).
Orthogonal trajectories Two curves are orthogonal to each other if their tangent lines are perpendicular at each point of intersection (recall that two lines are perpendicular to each other if their slopes are negative reciprocals). A family of curves forms orthogonal trajectories with another family of curves if each curve in one family is orthogonal to each curve in the other family. For example, the parabolas \(y=c x^{2}\) form orthogonal trajectories with the family of ellipses \(x^{2}+2 y^{2}=k,\) where \(c\) and \(k\) are constants (see figure). Find \(d y / d x\) for each equation of the following pairs. Use the derivatives to explain why the families of curves form orthogonal trajectories. \(y=m x ; x^{2}+y^{2}=a^{2},\) where \(m\) and \(a\) are constants
What do you think about this solution?
We value your feedback to improve our textbook solutions.