Chapter 3: Problem 102
Calculating limits exactly Use the definition of the derivative to evaluate the following limits. $$\lim _{h \rightarrow 0} \frac{\ln \left(e^{8}+h\right)-8}{h}$$
Chapter 3: Problem 102
Calculating limits exactly Use the definition of the derivative to evaluate the following limits. $$\lim _{h \rightarrow 0} \frac{\ln \left(e^{8}+h\right)-8}{h}$$
All the tools & learning materials you need for study success - in one app.
Get started for free\(F=f / g\) be the quotient of two functions that are differentiable at \(x\) a. Use the definition of \(F^{\prime}\) to show that $$ \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x+h)}{h g(x+h) g(x)} $$ b. Now add \(-f(x) g(x)+f(x) g(x)\) (which equals 0 ) to the numerator in the preceding limit to obtain $$\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{h g(x+h) g(x)}$$ Use this limit to obtain the Quotient Rule. c. Explain why \(F^{\prime}=(f / g)^{\prime}\) exists, whenever \(g(x) \neq 0\)
Assuming that \(f\) is differentiable for all \(x,\) simplify \(\lim _{x \rightarrow 5} \frac{f\left(x^{2}\right)-f(25)}{x-5}.\)
Find the following higher-order derivatives. $$\frac{d^{n}}{d x^{n}}\left(2^{x}\right)$$
Use the properties of logarithms to simplify the following functions before computing \(f^{\prime}(x)\). $$f(x)=\ln (3 x+1)^{4}$$
In general, the derivative of a product is not the product of the derivatives. Find nonconstant functions \(f\) and \(g\) such that the derivative of \(f g\) equals \(f^{\prime} g^{\prime}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.