Chapter 3: Problem 100
Calculating limits exactly Use the definition of the derivative to evaluate the following limits. $$\lim _{x \rightarrow e} \frac{\ln x-1}{x-e}$$
Chapter 3: Problem 100
Calculating limits exactly Use the definition of the derivative to evaluate the following limits. $$\lim _{x \rightarrow e} \frac{\ln x-1}{x-e}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeTangency question It is easily verified that the graphs of \(y=x^{2}\) and \(y=e^{x}\) have no points of intersection (for \(x>0\) ), and the graphs of \(y=x^{3}\) and \(y=e^{x}\) have two points of intersection. It follows that for some real number \(2
0 \) ). Using analytical and/or graphical methods, determine \(p\) and the coordinates of the single point of intersection.
Let \(f\) and \(g\) be differentiable functions with \(h(x)=f(g(x)) .\) For a given constant \(a,\) let \(u=g(a)\) and \(v=g(x),\) and define $$H(v)=\left\\{\begin{array}{ll} \frac{f(v)-f(u)}{v-u}-f^{\prime}(u) & \text { if } v \neq u \\ 0 & \text { if } v=u. \end{array}\right.$$ a. Show that \(\lim _{x \rightarrow u} H(v)=0\) b. For any value of \(u\) show that $$f(v)-f(u)=\left(H(v)+f^{\prime}(u)\right)(v-u).$$ c. Show that. $$h^{\prime}(a)=\lim _{x \rightarrow a}\left(\left(H(g(x))+f^{\prime}(g(a))\right) \cdot \frac{g(x)-g(a)}{x-a}\right).$$ d. Show that \(h^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)\).
Quotient Rule for the second derivative Assuming the first and second derivatives of \(f\) and \(g\) exist at \(x,\) find a formula for \(\frac{d^{2}}{d x^{2}}\left(\frac{f(x)}{g(x)}\right)\)
Orthogonal trajectories Two curves are orthogonal to each other if their tangent lines are perpendicular at each point of intersection (recall that two lines are perpendicular to each other if their slopes are negative reciprocals). A family of curves forms orthogonal trajectories with another family of curves if each curve in one family is orthogonal to each curve in the other family. For example, the parabolas \(y=c x^{2}\) form orthogonal trajectories with the family of ellipses \(x^{2}+2 y^{2}=k,\) where \(c\) and \(k\) are constants (see figure). Find \(d y / d x\) for each equation of the following pairs. Use the derivatives to explain why the families of curves form orthogonal trajectories. \(x y=a ; x^{2}-y^{2}=b,\) where \(a\) and \(b\) are constants
Let \(b\) represent the base diameter of a conifer tree and let \(h\) represent the height of the tree, where \(b\) is measured in centimeters and \(h\) is measured in meters. Assume the height is related to the base diameter by the function \(h=5.67+0.70 b+0.0067 b^{2}\). a. Graph the height function. b. Plot and interpret the meaning of \(\frac{d h}{d b}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.