Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two equivalent forms of the Chain Rule for calculating the derivative of \(y=f(g(x))\) are presented in this section. State both forms.

Short Answer

Expert verified
Question: State the two equivalent forms of the Chain Rule used to find the derivative of a composite function y = f(g(x)). Answer: The two equivalent forms of the Chain Rule are: 1. dy/dx = (dy/du) * (du/dx), where y = f(u) and u = g(x). 2. (dy/dx) = f'(g(x)) * g'(x), where y = f(g(x)).

Step by step solution

01

Form 1: Chain Rule using dy/dx, dy/du, and dx/du

The first form of the Chain Rule uses the derivatives dy/dx, dy/du, and du/dx. If y = f(u) and u = g(x), then the derivative dy/dx can be calculated as: dy/dx = (dy/du) * (du/dx) So, we first find the derivative dy/du (with respect to u) and du/dx (with respect to x), and then multiply them together to obtain the overall derivative dy/dx.
02

Form 2: Chain Rule using f' and g' notation

The second form of the Chain Rule uses the prime notation f'(x) and g'(x) for the derivatives of the functions f and g. If y = f(g(x)), then the derivative dy/dx can be calculated as: (dy/dx) = f'(g(x)) * g'(x) In this form, we first find the derivatives f'(x) and g'(x), evaluate f'(g(x)), and then multiply the results together to obtain the overall derivative dy/dx.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the properties of logarithms to simplify the following functions before computing \(f^{\prime}(x)\). $$f(x)=\ln \frac{(2 x-1)(x+2)^{3}}{(1-4 x)^{2}}$$

Let \(f\) and \(g\) be differentiable functions with \(h(x)=f(g(x)) .\) For a given constant \(a,\) let \(u=g(a)\) and \(v=g(x),\) and define $$H(v)=\left\\{\begin{array}{ll} \frac{f(v)-f(u)}{v-u}-f^{\prime}(u) & \text { if } v \neq u \\ 0 & \text { if } v=u. \end{array}\right.$$ a. Show that \(\lim _{x \rightarrow u} H(v)=0\) b. For any value of \(u\) show that $$f(v)-f(u)=\left(H(v)+f^{\prime}(u)\right)(v-u).$$ c. Show that. $$h^{\prime}(a)=\lim _{x \rightarrow a}\left(\left(H(g(x))+f^{\prime}(g(a))\right) \cdot \frac{g(x)-g(a)}{x-a}\right).$$ d. Show that \(h^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)\).

Identifying functions from an equation. The following equations implicitly define one or more functions. a. Find \(\frac{d y}{d x}\) using implicit differentiation. b. Solve the given equation for \(y\) to identify the implicitly defined functions \(y=f_{1}(x), y=f_{2}(x), \ldots\) c. Use the functions found in part (b) to graph the given equation. $$x^{4}=2\left(x^{2}-y^{2}\right) \text { (eight curve) }$$

a. Determine an equation of the tangent line and normal line at the given point \(\left(x_{0}, y_{0}\right)\) on the following curves. b. Graph the tangent and normal lines on the given graph. $$\begin{aligned} &3 x^{3}+7 y^{3}=10 y\\\ &\left(x_{0}, y_{0}\right)=(1,1) \end{aligned}$$

Tangency question It is easily verified that the graphs of \(y=1.1^{x}\) and \(y=x\) have two points of intersection, and the graphs of \(y=2^{x}\) and \(y=x\) have no points of intersection. It follows that for some real number \(1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free