Chapter 3: Problem 1
Two equivalent forms of the Chain Rule for calculating the derivative of \(y=f(g(x))\) are presented in this section. State both forms.
Chapter 3: Problem 1
Two equivalent forms of the Chain Rule for calculating the derivative of \(y=f(g(x))\) are presented in this section. State both forms.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the properties of logarithms to simplify the following functions before computing \(f^{\prime}(x)\). $$f(x)=\ln \frac{(2 x-1)(x+2)^{3}}{(1-4 x)^{2}}$$
Let \(f\) and \(g\) be differentiable functions with \(h(x)=f(g(x)) .\) For a given constant \(a,\) let \(u=g(a)\) and \(v=g(x),\) and define $$H(v)=\left\\{\begin{array}{ll} \frac{f(v)-f(u)}{v-u}-f^{\prime}(u) & \text { if } v \neq u \\ 0 & \text { if } v=u. \end{array}\right.$$ a. Show that \(\lim _{x \rightarrow u} H(v)=0\) b. For any value of \(u\) show that $$f(v)-f(u)=\left(H(v)+f^{\prime}(u)\right)(v-u).$$ c. Show that. $$h^{\prime}(a)=\lim _{x \rightarrow a}\left(\left(H(g(x))+f^{\prime}(g(a))\right) \cdot \frac{g(x)-g(a)}{x-a}\right).$$ d. Show that \(h^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)\).
Identifying functions from an equation. The following equations implicitly define one or more functions. a. Find \(\frac{d y}{d x}\) using implicit differentiation. b. Solve the given equation for \(y\) to identify the implicitly defined functions \(y=f_{1}(x), y=f_{2}(x), \ldots\) c. Use the functions found in part (b) to graph the given equation. $$x^{4}=2\left(x^{2}-y^{2}\right) \text { (eight curve) }$$
a. Determine an equation of the tangent line and normal line at the given point \(\left(x_{0}, y_{0}\right)\) on the following curves. b. Graph the tangent and normal lines on the given graph. $$\begin{aligned} &3 x^{3}+7 y^{3}=10 y\\\ &\left(x_{0}, y_{0}\right)=(1,1) \end{aligned}$$
Tangency question It is easily verified that the graphs of \(y=1.1^{x}\) and \(y=x\) have two points of intersection, and the graphs of \(y=2^{x}\) and \(y=x\) have no points of intersection. It follows that for some real number \(1
What do you think about this solution?
We value your feedback to improve our textbook solutions.