Chapter 3: Problem 1
How do you find the derivative of the product of two functions that are differentiable at a point?
Chapter 3: Problem 1
How do you find the derivative of the product of two functions that are differentiable at a point?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe position (in meters) of a marble rolling up a long incline is given by \(s=\frac{100 t}{t+1},\) where \(t\) is measured in seconds and \(s=0\) is the starting point. a. Graph the position function. b. Find the velocity function for the marble. c. Graph the velocity function and give a description of the motion of the marble. d. At what time is the marble 80 m from its starting point? e. At what time is the velocity \(50 \mathrm{m} / \mathrm{s} ?\)
Orthogonal trajectories Two curves are orthogonal to each other if their tangent lines are perpendicular at each point of intersection (recall that two lines are perpendicular to each other if their slopes are negative reciprocals). A family of curves forms orthogonal trajectories with another family of curves if each curve in one family is orthogonal to each curve in the other family. For example, the parabolas \(y=c x^{2}\) form orthogonal trajectories with the family of ellipses \(x^{2}+2 y^{2}=k,\) where \(c\) and \(k\) are constants (see figure). Find \(d y / d x\) for each equation of the following pairs. Use the derivatives to explain why the families of curves form orthogonal trajectories. \(y=c x^{2} ; x^{2}+2 y^{2}=k,\) where \(c\) and \(k\) are constants
Use the properties of logarithms to simplify the following functions before computing \(f^{\prime}(x)\). $$f(x)=\ln \frac{2 x}{\left(x^{2}+1\right)^{3}}$$
Orthogonal trajectories Two curves are orthogonal to each other if their tangent lines are perpendicular at each point of intersection (recall that two lines are perpendicular to each other if their slopes are negative reciprocals). A family of curves forms orthogonal trajectories with another family of curves if each curve in one family is orthogonal to each curve in the other family. For example, the parabolas \(y=c x^{2}\) form orthogonal trajectories with the family of ellipses \(x^{2}+2 y^{2}=k,\) where \(c\) and \(k\) are constants (see figure). Find \(d y / d x\) for each equation of the following pairs. Use the derivatives to explain why the families of curves form orthogonal trajectories. \(y=m x ; x^{2}+y^{2}=a^{2},\) where \(m\) and \(a\) are constants
A thin copper rod, 4 meters in length, is heated at its midpoint, and the ends are held at a constant temperature of \(0^{\circ} .\) When the temperature reaches equilibrium, the temperature profile is given by \(T(x)=40 x(4-x),\) where \(0 \leq x \leq 4\) is the position along the rod. The heat flux at a point on the rod equals \(-k T^{\prime}(x),\) where \(k>0\) is a constant. If the heat flux is positive at a point, heat moves in the positive \(x\) -direction at that point, and if the heat flux is negative, heat moves in the negative \(x\) -direction. a. With \(k=1,\) what is the heat flux at \(x=1 ?\) At \(x=3 ?\) b. For what values of \(x\) is the heat flux negative? Positive? c. Explain the statement that heat flows out of the rod at its ends.
What do you think about this solution?
We value your feedback to improve our textbook solutions.