Chapter 3: Problem 1
Give an example in which one dimension of a geometric figure changes and produces a corresponding change in the area or volume of the figure.
Chapter 3: Problem 1
Give an example in which one dimension of a geometric figure changes and produces a corresponding change in the area or volume of the figure.
All the tools & learning materials you need for study success - in one app.
Get started for freeEarth's atmospheric pressure decreases with altitude from a sea level pressure of 1000 millibars (a unit of pressure used by meteorologists). Letting \(z\) be the height above Earth's surface (sea level) in \(\mathrm{km}\), the atmospheric pressure is modeled by \(p(z)=1000 e^{-z / 10}.\) a. Compute the pressure at the summit of Mt. Everest which has an elevation of roughly \(10 \mathrm{km}\). Compare the pressure on Mt. Everest to the pressure at sea level. b. Compute the average change in pressure in the first \(5 \mathrm{km}\) above Earth's surface. c. Compute the rate of change of the pressure at an elevation of \(5 \mathrm{km}\). d. Does \(p^{\prime}(z)\) increase or decrease with \(z\) ? Explain. e. What is the meaning of \(\lim _{z \rightarrow \infty} p(z)=0 ?\)
Let \(C(x)\) represent the cost of producing \(x\) items and \(p(x)\) be the sale price per item if \(x\) items are sold. The profit \(P(x)\) of selling x items is \(P(x)=x p(x)-C(x)\) (revenue minus costs). The average profit per item when \(x\) items are sold is \(P(x) / x\) and the marginal profit is dP/dx. The marginal profit approximates the profit obtained by selling one more item given that \(x\) items have already been sold. Consider the following cost functions \(C\) and price functions \(p\). a. Find the profit function \(P\). b. Find the average profit function and marginal profit function. c. Find the average profit and marginal profit if \(x=a\) units are sold. d. Interpret the meaning of the values obtained in part \((c)\). $$\begin{aligned} &C(x)=-0.04 x^{2}+100 x+800, p(x)=200-0.1 x,\\\ &\bar{a}=1000 \end{aligned}$$
Identifying functions from an equation. The following equations implicitly define one or more functions. a. Find \(\frac{d y}{d x}\) using implicit differentiation. b. Solve the given equation for \(y\) to identify the implicitly defined functions \(y=f_{1}(x), y=f_{2}(x), \ldots\) c. Use the functions found in part (b) to graph the given equation. \(y^{3}=a x^{2}(\text { Neile's semicubical parabola })\)
Work carefully Proceed with caution when using implicit differentiation to find points at which a curve has a specified slope. For the following curves, find the points on the curve (if they exist) at which the tangent line is horizontal or vertical. Once you have found possible points, make sure they actually lie on the curve. Confirm your results with a graph. $$x^{2}\left(3 y^{2}-2 y^{3}\right)=4$$
Prove the following identities and give the values of \(x\) for which they are true. $$\sin \left(2 \sin ^{-1} x\right)=2 x \sqrt{1-x^{2}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.