Chapter 2: Problem 58
Use the following definition for the nonexistence of a limit. Assume \(f\) is defined for all values of \(x\) near a, except possibly at a. We write \(\lim _{x \rightarrow a} f(x) \neq L\) if for some \(\varepsilon>0\) there is no value of \(\delta>0\) satisfying the condition $$|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-a|<\delta.$$ Let $$f(x)=\left\\{\begin{array}{ll} 0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational. } \end{array}\right.$$ Prove that \(\lim _{x \rightarrow a} f(x)\) does not exist for any value of \(a\). (Hint: Assume \(\lim _{x \rightarrow a} f(x)=L\) for some values of \(a\) and \(L\) and let \(\varepsilon=\frac{1}{2}\).)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.