Chapter 2: Problem 51
The limit at infinity \(\lim _{x \rightarrow \infty} f(x)=L\) means that for any \(\varepsilon>0\) there exists \(N>0\) such that $$|f(x)-L|<\varepsilon \quad \text { whenever } \quad x>N.$$ Use this definition to prove the following statements. $$\lim _{x \rightarrow \infty} \frac{2 x+1}{x}=2$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.