Chapter 2: Problem 4
$$\text { Explain the meaning of } \lim _{x \rightarrow a} f(x)=L$$
Chapter 2: Problem 4
$$\text { Explain the meaning of } \lim _{x \rightarrow a} f(x)=L$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a graphing utility to plot \(y=\frac{\sin p x}{\sin q x}\) for at least three different pairs of nonzero constants \(p\) and \(q\) of your choice. Estimate \(\lim _{x \rightarrow 0} \frac{\sin p x}{\sin q x}\) in each case. Then use your work to make a conjecture about the value of \(\lim _{x \rightarrow 0} \frac{\sin p x}{\sin q x}\) for any nonzero values of \(p\) and \(q\)
Asymptotes Find the vertical and horizontal asymptotes of \(f(x)=\frac{\cos x+2 \sqrt{x}}{\sqrt{x}}\)
Assume the functions \(f, g,\) and \(h\) satisfy the inequality \(f(x) \leq g(x) \leq h(x)\) for all values of \(x\) near \(a,\) except possibly at \(a .\) Prove that if \(\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L\) then \(\lim _{x \rightarrow a} g(x)=L\).
Evaluate \(\lim _{x \rightarrow \infty} f(x)\) \(f(x)\) and \(\lim _{x \rightarrow-\infty} f(x)\) Then state the horizontal asymptote(s) of \(f\). Confirm your findings by plotting \(f\) $$f(x)=\frac{3 e^{x}+e^{-x}}{e^{x}+e^{-x}}$$
Determine whether the following statements are true and give an explanation or counterexample. a. The value of \(\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}\) does not exist. b. The value of \(\lim _{x \rightarrow a} f(x)\) is always found by computing \(f(a)\) c. The value of \(\lim _{x \rightarrow a} f(x)\) does not exist if \(f(a)\) is undefined. d. \(\lim _{x \rightarrow 0} \sqrt{x}=0\) \(\lim _{x \rightarrow \pi / 2} \cot x=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.