Chapter 2: Problem 37
For any real number \(x\), the floor function (or greatest integer function) \(\lfloor x\rfloor\) is the greatest integer less than or equal to \(x\) (see figure). a. Compute \(\lim _{x \rightarrow-1^{-}}\lfloor x\rfloor, \lim _{x \rightarrow-1^{+}}\lfloor x\rfloor, \lim _{x \rightarrow 2^{-}}\lfloor x\rfloor,\) and \(\lim _{x \rightarrow 2^{+}}\lfloor x\rfloor\) b. Compute \(\lim _{x \rightarrow 2,3^{-}}\lfloor x\rfloor, \lim _{x \rightarrow 2,3^{+}}\lfloor x\rfloor,\) and \(\lim _{x \rightarrow 2,3}\lfloor x\rfloor\) c. For a given integer \(a,\) state the values of \(\lim _{n \rightarrow \infty}\lfloor x\rfloor\) and $$ \lim _{x \rightarrow a^{+}}\lfloor x\rfloor $$ d. In general, if \(a\) is not an integer, state the values of \(\lim _{n \rightarrow \infty}\lfloor x\rfloor\) and \(\lim _{x \rightarrow a^{+}}\lfloor x\rfloor\). e. For what values of \(a\) does \(\lim _{x \rightarrow a}\lfloor x\rfloor\) exist? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.