Chapter 2: Problem 3
$$\text { Explain the meaning of } \lim _{x \rightarrow a^{+}} f(x)=L$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 3
$$\text { Explain the meaning of } \lim _{x \rightarrow a^{+}} f(x)=L$$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeSteady states If a function \(f\) represents a system that varies in time, the existence of \(\lim f(t)\) means that the system reaches a steady state (or equilibrium). For the following systems, determine whether a steady state exists and give the steady-state value. The value of an investment in dollars is given by \(v(t)=1000 e^{0.065 t}\)
Prove the following statements to establish the fact that \(\lim f(x)=L\) if and only if \(\lim _{x \rightarrow a^{-}} f(x)=L\) and \(\lim _{x \rightarrow a^{+}} f(x)=L\). a. If \(\lim _{x \rightarrow a^{-}} f(x)=L\) and \(\lim _{x \rightarrow a^{+}} f(x)=L,\) then \(\lim _{x \rightarrow a} f(x)=L\) b. If \(\lim _{x \rightarrow a} f(x)=L,\) then \(\lim _{x \rightarrow a^{-}} f(x)=L\) and \(\lim _{x \rightarrow a^{+}} f(x)=L\)
For any real number \(x\), the floor function (or greatest integer function) \(\lfloor x\rfloor\) is the greatest integer less than or equal to \(x\) (see figure). a. Compute \(\lim _{x \rightarrow-1^{-}}\lfloor x\rfloor, \lim _{x \rightarrow-1^{+}}\lfloor x\rfloor, \lim _{x \rightarrow 2^{-}}\lfloor x\rfloor,\) and \(\lim _{x \rightarrow 2^{+}}\lfloor x\rfloor\) b. Compute \(\lim _{x \rightarrow 2,3^{-}}\lfloor x\rfloor, \lim _{x \rightarrow 2,3^{+}}\lfloor x\rfloor,\) and \(\lim _{x \rightarrow 2,3}\lfloor x\rfloor\) c. For a given integer \(a,\) state the values of \(\lim _{n \rightarrow \infty}\lfloor x\rfloor\) and $$ \lim _{x \rightarrow a^{+}}\lfloor x\rfloor $$ d. In general, if \(a\) is not an integer, state the values of \(\lim _{n \rightarrow \infty}\lfloor x\rfloor\) and \(\lim _{x \rightarrow a^{+}}\lfloor x\rfloor\). e. For what values of \(a\) does \(\lim _{x \rightarrow a}\lfloor x\rfloor\) exist? Explain.
Evaluate the following limits. \(\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{4 x+5}-3}\)
Graph the function \(f(x)=\frac{\sin x}{x}\) using a graphing window of \([-\pi, \pi] \times[0,2]\). a. Sketch a copy of the graph obtained with your graphing device and describe any inaccuracies appearing in the graph. b. Sketch an accurate graph of the function. Is \(f\) continuous at \(0 ?\) c. What is the value of \(\lim _{x \rightarrow 0} \frac{\sin x}{x} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.