Chapter 2: Problem 3
For what values of \(a\) does \(\lim r(x)=r(a)\) if \(r\) is a rational function?
Chapter 2: Problem 3
For what values of \(a\) does \(\lim r(x)=r(a)\) if \(r\) is a rational function?
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the following limits using the factorization formula \(x^{n}-a^{n}=(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right)\) where \(n\) is a positive integer and a is a real number. \(\lim _{x \rightarrow 1} \frac{x^{6}-1}{x-1}\)
Calculate the following limits using the factorization formula \(x^{n}-a^{n}=(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right)\) where \(n\) is a positive integer and a is a real number. $$\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{x-1}\left(\text { Hint: } x-1=(\sqrt[3]{x})^{3}-(1)^{3}\text { ). }\right.$$
Calculate the following limits using the factorization formula \(x^{n}-a^{n}=(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\cdots+x a^{n-2}+a^{n-1}\right)\) where \(n\) is a positive integer and a is a real number. $$\lim _{x \rightarrow 16} \frac{\sqrt[4]{x}-2}{x-16}$$
Calculator limits Estimate the value of the following limits by creating a table of function values for \(h=0.01,0.001,\) and 0.0001 and \(h=-0.01,-0.001,\) and -0.0001. $$\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}$$
Suppose \(f\) is continuous at \(a\) and assume \(f(a)>0 .\) Show that there is a positive number \(\delta>0\) for which \(f(x)>0\) for all values of \(x\) in \((a-\delta, a+\delta) .\) (In other words, \(f\) is positive for all values of \(x\) in the domain of \(f\) and in some interval containing \(a .)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.