Chapter 14: Problem 68
Let \(S\) be a surface that represents a thin shell with density \(\rho .\) The moments about the coordinate planes (see Section 13.6 ) are \(M_{y z}=\iint_{S} x \rho(x, y, z) d S, M_{x z}=\iint_{S} y \rho(x, y, z) d S\) and \(M_{x y}=\iint_{S} z \rho(x, y, z) d S .\) The coordinates of the center of mass of the shell are \(\bar{x}=\frac{M_{y z}}{m}, \bar{y}=\frac{M_{x z}}{m}, \bar{z}=\frac{M_{x y}}{m},\) where \(m\) is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible. The constant-density half cylinder \(x^{2}+z^{2}=a^{2},-h / 2 \leq y \leq h / 2, z \geq 0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.