Chapter 14: Problem 63
The heat flow vector field for conducting objects is \(\mathbf{F}=-k \nabla T,\) where \(T(x, y, z)\) is the temperature in the object and \(k>0\) is a constant that depends on the material. Compute the outward flux of \(\mathbf{F}\) across the following surfaces S for the given temperature distributions. Assume \(k=1\). \(T(x, y, z)=-\ln \left(x^{2}+y^{2}+z^{2}\right) ; S\) is the sphere \(x^{2}+y^{2}+z^{2}=a^{2}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.