Chapter 14: Problem 62
The rotation of a three-dimensional velocity field \(\mathbf{V}=\langle u, v, w\rangle\) is measured by the vorticity \(\omega=\nabla \times \mathbf{V} .\) If \(\omega=\mathbf{0}\) at all points in the domain, the flow is irrotational. a. Which of the following velocity fields is irrotational: \(\mathbf{V}=\langle 2,-3 y, 5 z\rangle\) or \(\mathbf{V}=\langle y, x-z,-y\rangle ?\) b. Recall that for a two-dimensional source-free flow \(\mathbf{V}=(u, v, 0),\) a stream function \(\psi(x, y)\) may be defined such that \(u=\psi_{y}\) and \(v=-\psi_{x} .\) For such a two-dimensional flow, let \(\zeta=\mathbf{k} \cdot \nabla \times \mathbf{V}\) be the \(\mathbf{k}\) -component of the vorticity. Show that \(\nabla^{2} \psi=\nabla \cdot \nabla \psi=-\zeta\). c. Consider the stream function \(\psi(x, y)=\sin x \sin y\) on the square region \(R=\\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \pi\\}\). Find the velocity components \(u\) and \(v\); then sketch the velocity field. d. For the stream function in part (c), find the vorticity function \(\zeta\) as defined in part (b). Plot several level curves of the vorticity function. Where on \(R\) is it a maximum? A minimum?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.