Chapter 14: Problem 61
The Navier-Stokes equation is the fundamental equation of fluid dynamics that models the flow in everything from bathtubs to oceans. In one of its many forms (incompressible, viscous flow), the equation is $$\rho\left(\frac{\partial \mathbf{V}}{\partial t}+(\mathbf{V} \cdot \nabla) \mathbf{V}\right)=-\nabla p+\mu(\nabla \cdot \nabla) \mathbf{V}.$$ In this notation, \(\mathbf{V}=\langle u, v, w\rangle\) is the three-dimensional velocity field, \(p\) is the (scalar) pressure, \(\rho\) is the constant density of the fluid, and \(\mu\) is the constant viscosity. Write out the three component equations of this vector equation. (See Exercise 40 for an interpretation of the operations.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.