Chapter 14: Problem 53
The gravitational force between two point masses \(M\) and \(m\) is $$ \mathbf{F}=G M m \frac{\mathbf{r}}{|\mathbf{r}|^{3}}=G M m \frac{\langle x, y, z\rangle}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} $$ where \(G\) is the gravitational constant. a. Verify that this force field is conservative on any region excluding the origin. b. Find a potential function \(\varphi\) for this force field such that \(\mathbf{F}=-\nabla \varphi\) c. Suppose the object with mass \(m\) is moved from a point \(A\) to a point \(B,\) where \(A\) is a distance \(r_{1}\) from \(M\) and \(B\) is a distance \(r_{2}\) from \(M .\) Show that the work done in moving the object is $$ G M m\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) $$ d. Does the work depend on the path between \(A\) and \(B\) ? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.