Chapter 14: Problem 52
\(A\) scalar-valued function \(\varphi\) is harmonic on a region \(D\) if \(\nabla^{2} \varphi=\nabla \cdot \nabla \varphi=0\) at all points of \(D\) Show that the potential function \(\varphi(x, y, z)=|\mathbf{r}|^{-p}\) is harmonic provided \(p=0\) or \(p=1,\) where \(\mathbf{r}=\langle x, y, z\rangle .\) To what vector fields do these potentials correspond?
Short Answer
Step by step solution
Compute \(\nabla \varphi\)
Compute \(\nabla^2 \varphi\)
Check conditions for harmonicity
Corresponding vector fields
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Laplacian
Gradient
- \(\frac{\partial \varphi}{\partial x}\)
- \(\frac{\partial \varphi}{\partial y}\)
- \(\frac{\partial \varphi}{\partial z}\)