Chapter 14: Problem 50
Find a vector field \(\mathbf{F}\) with the given curl. In each case, is the vector field you found unique? $$\operatorname{curl} \mathbf{F}=\langle 0,1,0\rangle$$
Chapter 14: Problem 50
Find a vector field \(\mathbf{F}\) with the given curl. In each case, is the vector field you found unique? $$\operatorname{curl} \mathbf{F}=\langle 0,1,0\rangle$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the rotational velocity field \(\mathbf{v}=\langle-2 y, 2 z, 0\rangle\). a. If a paddle wheel is placed in the \(x y\) -plane with its axis normal to this plane, what is its angular speed? b. If a paddle wheel is placed in the \(x z\) -plane with its axis normal to this plane, what is its angular speed? c. If a paddle wheel is placed in the \(y z\) -plane with its axis normal to this plane, what is its angular speed?
Let \(f\) be differentiable and positive on the interval \([a, b] .\) Let \(S\) be the surface generated when the graph of \(f\) on \([a, b]\) is revolved about the \(x\) -axis. Use Theorem 14.12 to show that the area of \(S\) (as given in Section 6.6 ) is $$ \int_{a}^{b} 2 \pi f(x) \sqrt{1+f^{\prime}(x)^{2}} d x $$.
Prove Green's First Identity for twice differentiable scalar-valued functions \(u\) and \(v\) defined on a region \(D\) : $$\iiint_{D}\left(u \nabla^{2} v+\nabla u \cdot \nabla v\right) d V=\iint_{S} u \nabla v \cdot \mathbf{n} d S$$ where \(\nabla^{2} v=\nabla \cdot \nabla v .\) You may apply Gauss' Formula in Exercise 48 to \(\mathbf{F}=\nabla v\) or apply the Divergence Theorem to \(\mathbf{F}=u \nabla v\)
Recall the Product Rule of Theorem \(14.11: \nabla \cdot(u \mathbf{F})=\nabla u \cdot \mathbf{F}+u(\nabla \cdot \mathbf{F})\) a. Integrate both sides of this identity over a solid region \(D\) with a closed boundary \(S\) and use the Divergence Theorem to prove an integration by parts rule: $$\iiint_{D} u(\nabla \cdot \mathbf{F}) d V=\iint_{S} u \mathbf{F} \cdot \mathbf{n} d S-\iiint_{D} \nabla u \cdot \mathbf{F} d V$$ b. Explain the correspondence between this rule and the integration by parts rule for single-variable functions. c. Use integration by parts to evaluate \(\iiint_{D}\left(x^{2} y+y^{2} z+z^{2} x\right) d V\) where \(D\) is the cube in the first octant cut by the planes \(x=1\) \(y=1,\) and \(z=1\)
The French physicist André-Marie Ampère \((1775-1836)\) discovered that an electrical current \(I\) in a wire produces a magnetic field \(\mathbf{B} .\) A special case of Ampère's Law relates the current to the magnetic field through the equation \(\oint_{C} \mathbf{B} \cdot d \mathbf{r}=\mu I,\) where \(C\) is any closed curve through which the wire passes and \(\mu\) is a physical constant. Assume that the current \(I\) is given in terms of the current density \(\mathbf{J}\) as \(I=\iint_{S} \mathbf{J} \cdot \mathbf{n} d S\) where \(S\) is an oriented surface with \(C\) as a boundary. Use Stokes' Theorem to show that an equivalent form of Ampère's Law is \(\nabla \times \mathbf{B}=\mu \mathbf{J}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.