Chapter 14: Problem 46
Let \(\mathbf{F}\) be a radial field \(\mathbf{F}=\mathbf{r} /|\mathbf{r}|^{p},\) where \(p\) is a real number and \(\mathbf{r}=\langle x, y, z\rangle .\) With \(p=3, \mathbf{F}\) is an inverse square field. a. Show that the net flux across a sphere centered at the origin is independent of the radius of the sphere only for \(p=3\) b. Explain the observation in part (a) by finding the flux of \(\mathbf{F}=\mathbf{r} /|\mathbf{r}|^{p}\) across the boundaries of a spherical box \(\left\\{(\rho, \varphi, \theta): a \leq \rho \leq b, \varphi_{1} \leq \varphi \leq \varphi_{2}, \theta_{1} \leq \theta \leq \theta_{2}\right\\}\) for various values of \(p\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.